
Master’s Thesis

Stabilizing Off-Policy TD with

Feature Normalization

Aditya Bhatt

February 11th, 2019

Albert-Ludwigs-University Freiburg

Department of Computer Science

Computer Vision Group

Writing Period

10. 08. 2018 – 11. 02. 2019

Examiner

Prof. Dr. Thomas Brox

Second Examiner

Prof. Dr. Joschka Boedecker

Advisers

Max Argus, Artemij Amiranashvili

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare, that my thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

In Reinforcement Learning (RL), Temporal-Difference (TD) methods are a family of

powerful algorithms that apply bootstrapping to efficiently learn various value functions

by relating predictions at consecutive time-steps to each other. For TD(0), the most

fundamental of these, there exist proofs of convergence when using parametrized

function approximators in the on-policy case. TD(0) can also be used for off-policy

learning, where data gathered under one behavior policy can be reused to predict

the future under a different policy. However, the confluence of approximation,

bootstrapping, and off-policy learning — called the deadly triad — runs a risk

of divergence. In this thesis, we study how feature normalization can affect the

convergence properties of TD(0). Following this analysis, we propose CrossNorm, a

variant of Batch Normalization that accounts for the presence of two data distributions

in off-policy learning. We show that CrossNorm improves the stability of the learning

process in both policy evaluation and policy improvement. In the Deep RL case,

CrossNorm is easily incorporated into methods like DDPG and TD3. For the first

time, we demonstrate stable and superior training of DDPG without the use of target

networks.

ii

Contents

1 Introduction 1

2 Background 3

2.1 Markov Decision Processes . 3

2.1.1 Model-Based RL . 4

2.1.2 Model-Free RL . 5

2.2 Policies and Value Functions . 5

2.3 Dynamic Programming . 6

2.3.1 Policy Evaluation . 6

2.3.2 Policy Improvement . 8

2.4 Temporal Difference Learning . 8

2.4.1 On-policy and Off-policy learning 9

2.5 Deterministic Policy Gradient . 10

2.5.1 Target Networks . 11

2.5.2 TD3 . 12

3 Stability Analysis of TD Learning 13

3.1 Mean ODE-based formulation . 13

3.2 Structure of the Key Matrix . 16

3.3 Eigenvalues of the Key Matrix . 17

4 Method 20

4.1 Stabilizing off-policy TD . 20

4.2 Data Recentering . 21

iii

Contents

4.3 Baird’s Counterexample . 23

4.3.1 Convergence with normalization 24

4.3.2 Phase Plots . 24

4.4 Positive Semi-Definiteness of the Key Matrices 29

4.4.1 Rank-reduction property of α+ β = 1 normalization 29

5 CrossNorm for Deep Reinforcement Learning 32

5.1 From BatchNorm to CrossNorm . 32

5.2 Experiments . 33

5.2.1 Fixed-Buffer Experiments . 34

5.2.2 Concurrent Training . 35

6 Conclusion 38

6.1 Summary . 38

6.2 Future Work . 38

Bibliography 40

iv

List of Figures

1 The agent-environment cycle in Reinforcement Learning 3

2 Baird’s Counterexample . 24

3 Divergence of Baird’s Counterexample 25

4 Convergence of Baird’s Counterexample 1 25

5 Convergence of Baird’s Counterexample 2 26

6 Convergence of Baird’s Counterexample 3 26

7 Phase plot for Baird’s Counterexample 27

8 Eigenvalue plot for Baird’s Counterexample 28

9 PSD-ness for key matrices . 31

10 Walker2d phase plot . 34

11 Fixed-buffer DDPG training . 35

12 MuJoCo simulation environments. 35

13 Comparisons for DDPG with CrossNorm 36

14 Comparisons for TD3 with CrossNorm 37

v

1 Introduction

Modern Reinforcement Learning (RL) has achieved many impressive results (Mnih

et al., 2015; Silver et al., 2017), however a major concern is its lack of data efficiency.

Indeed, many popular RL algorithms require a large amount of trial and error

processes, often on the order of that needed by random search (Mania et al., 2018).

Model-based RL methods promise to make the most effective use of available data,

but sometimes learning a good transition model can be prohibitively difficult. A

more practical approach is to avoid learning a model altogether, and use off-policy

model-free RL methods to estimate how valuable behavior under a hypothetical policy

could be, even if the historical data was gathered using a very different policy.

Typically, these methods are used with Temporal Difference (TD) learning, which

relates future predictions at consecutive timesteps to each other; known as bootstrap-

ping, this is a form of Dynamic Programming that allows for very fast learning from

tiny fragments of experience rather than having to process full state-space trajectories.

Off-policy RL methods are very data-efficient learning algorithms, and when

combined with Deep Learning they are particularly important in Robotics where trial-

and-error learning is expensive (Lillicrap et al., 2015; Gu et al., 2017). Unfortunately,

the highly desirable combination of off-policy learning, bootstrapping, and function

approximation suffers from the risk of divergence during optimization. These three

are appropriately known as the deadly triad of RL; a combination of any two without

the other is convergent.

To address this problem, a common practice in Deep RL is to use target networks

(Mnih et al., 2015; Lillicrap et al., 2015) to slow down bootstrapping by maintaining

1

1 Introduction

a separate, stale copy of the training parameters; this stabilizes agent training at the

cost of learning speed. It is believed that if the dependency on target networks could

be eliminated while still preserving stability, agents could learn even faster (Plappert

et al., 2018). In this thesis, we discover a simple and convenient manipulation of

the features that achieves this goal. The technique, which we name CrossNorm, is

a variant of Batch Normalization (Ioffe and Szegedy, 2015) that explicitly accounts

for the fact that off-policy learning deals with not one but two data distributions.

Agents trained with CrossNorm no longer require target networks for stable training,

and exhibit large speedups in learning.

2

2 Background

Reinforcement Learning (Sutton and Barto, 2018) studies how an agent interacts

with an environment with the aim of learning to solve problems within it. In the

standard RL formulation, the only indicator of how well an agent is performing is a

single scalar reward determined by its interaction with the environment. The agent

must aim to maximize the sum of all rewards it will see during its lifetime.

2.1 Markov Decision Processes

Figure 1: At each timestep t, the agent senses an observation of the environment
state St, and performs an action At that affects the system. For this interaction, it
gets an instantaneous reward Rt.

The agent-environment cycle in Figure 1 is formalized using Markov Decision

Processes (MDPs). The MDP contains a set of states S and a set of actions A. All

the important quantities at each time step — the state St ∈ S , the action At ∈ A,

and the reward Rt ∈ R — are random variables. States are sampled by the agent

from the environment, and actions are received by the environment from the agent.

The behavior of the agent, given by its actions, determines the scalar reward. The

3

2 Background

transitions between timesteps are assumed to be markovian; a system state depends,

by construction, only upon the previous state-action pair:

p (st+1|st, at, st−1, at−1, ...)
.
= p (st+1|st, at)

Any rule or process by which the agent selects actions is called a policy. A policy π can

either be stochastic — in which case it defines a density over actions as At ∼ π(at|st)
— or it can be deterministic, in which case it is a function π : S→ A.

Each transition gets a corresponding reward, so the history of the system can be

written as a sequence of experience tuples (st, at, rt, st+1). As the system evolves

over time, the return following any timestep t is the total reward gathered until

termination:

Gt
.
= Rt +Rt+1 +Rt+2 + ...+RT =

T−t∑
k=0

Rt+k

where T is some final timestep. Often, T could be very large or even infinite, and the

return could grow indefinitely. Therefore, an often-used alternative is the discounted

return:

Gγt
.
= Rt + γRt+1 + γ2Rt+2 + ... =

∞∑
k=0

γkRt+k

The exponentially decaying weighting of the reward signal forces the sum to converge

to a finite value. For convenience, we will drop γ from the return symbol and simply

use Gt to mean a discounted return. The return Gt is a random variable that scores

a random long-term future trajectory. Thus at each timestep, an optimal agent must

behave so as to maximize the expected return E[Gt]; that is the goal of RL.

2.1.1 Model-Based RL

If the agent has knowledge of the transition model, it can utilize powerful techniques

like model-predictive control to predict the future and determine the best course of

action. With learned, differentiable, transition and reward models, a parametrized

policy could even be optimized to achieve the best possible return (Nagabandi et al.,

4

2.2 Policies and Value Functions

2018). Despite the data-efficiency of such approaches (once a model is learned),

iterated predictions far into the future could be very wrong because of compounding

model errors — resulting in inefficient policies.

2.1.2 Model-Free RL

In model-free RL, which concerns the rest of this thesis, the agent avoids learning a

model altogether. Instead, it attempts to directly improve the expected return by

learning a better policy from trial-and-error experiences.

2.2 Policies and Value Functions

In this section, we define some fundamental RL concepts that will be extensively

used in the rest of the thesis.

Definition 2.2.1. The value function vπ : S → R is the expected return when

starting from state s and following π until termination:

vπ(s)
.
= Eπ [Gt|St = s]

Definition 2.2.2. The action-value function qπ : S×A→ R is the expected return

when taking action a in state s and then following π until termination:

qπ(s)
.
= Eπ [Gt|St = s,At = a]

Value functions evaluate the long-term future behavior of the agent under a given

policy. Due to the markov property, we can express them in a recursive form using

the Bellman Expectation Equations:

vπ(s) = Eπ [Rt + γvπ(St+1)|St = s]

qπ(s, a) = Eπ [Rt + γqπ(St+1, π(St+1))|St = s,At = a]
(1)

Once we have scorings on policies, the next step is to compare them.

5

2 Background

Definition 2.2.3. For two policies π and π′, we define π ≥ π′ as holding if and only

if vπ(s) ≥ vπ′
(s) for each s ∈ S.

The partial ordering ≥ betwen policies tells us that one policy is better than another.

It implies the existence of a nonempty set of the best possible policies, with the same

corresponding value function.

We refer to any such optimal policy as π∗, and the corresponding optimal value

functions as v∗(s) .
= maxπv

π(s) and q∗(s, a)
.
= maxπq

π(s, a). These, too, admit a

recursive definition using the Bellman Optimality Equations:

v∗(s) = max
a

Eπ [r(s, a) + γv∗(St+1)|St = s,At = a]

q∗(s, a) = max
a′

Eπ
[
r(s, a) + γq∗(St+1, a

′)|St = s,At = a
] (2)

Knowledge of the function q∗(s, a) over all of S and A amounts to having completely

solved the RL problem, because then optimal policy is just a greedy maximization of

the function at each state:

π∗(s) = argmax
a

q∗(s, a)

2.3 Dynamic Programming

Using Dynamic Programming, we can use the previously identified recursions to

actually estimate value functions from data and find policies. For the following

concepts, we assume a tabular representation of the value function, i.e. all value

estimates are stored in a large table with an entry for each state (and action, if

applicable). To avoid confusion with the true value functions — e.g. vπ(s) — we use

the uppercase notation — e.g. V π(s) — to denote the estimated values.

2.3.1 Policy Evaluation

To improve a policy π, the agent must first be able to evaluate it. For this, it must

estimate vπ(s) by gathering data from interactions. The most straightforward way to

6

2.3 Dynamic Programming

do this policy evaluation for a state s is to simply run π to completion many times,

and then average the returns for all those trajectories. This is known as Monte-Carlo

estimation. However, for some MDPs trajectories may terminate after a very long

time, if at all. Waiting for them to finish before updating the valuation can therefore

be impractical. A much more efficient way is to use dynamic programming, by turning

the Bellman Expectation Equations (Equation (1)) into assignments:

vπ(s) = Eπ [Rt + γvπ(St+1)|St = s]

↓

V k+1(s)
.
= Eπ

[
Rt + γV k(St+1)|St = s

]
The above equation looks ahead one step in time, and enforces a consistency condition

on the estimated value by updating it to satisfy the bellman equation. Such an

operation is called a backup, and is succintly described with the Bellman Backup

Operator T π:

V k+1 .
= T πV k (3)

Here, we have omitted the argument s and equivalently represented the values over

the entire state space as the vector V k ∈ RN×1 where N = |S|. It has been shown in

Bertsekas and Tsitsiklis (1996) that T π is a contraction in the max-norm || · ||∞; for

any two value estimates U(s) and V (s):

||T πU − T πV ||∞ ≤ γ||U − V ||∞

The contraction property means that regardless of the valuation V 0 we start with,

repeated backups perform fixed-point iteration, causing policy evaluation to converge

to the true value function.

lim
k→∞

(T π)kV 0 = vπ

7

2 Background

2.3.2 Policy Improvement

Having estimated Qπ(s, a) using policy evaluation, we can improve π. If taking

an action at s according to π(s) provides the highest-possible return, then π is

optimal at s. But if it does not, then π can be modified to become π′ so that

π′(s) = argmaxaQ
π(s, a).

Thus, any modification π′ that acts greedily w.r.t Qπ(s, a) is an improvement over π.

Policy Iteration is the process of alternating between policy evaluation and policy

improvement; it converges to the optimal value function and policy.

Policy evaluation can be expensive, requiring several sweeps over the entire state

space. When coupled with a changing policy, policy iteration could require a lot

of computation. It turns out that this is not strictly necessary; we can simply

perform a combined single step of evaluation and improvement by turning the

Bellman Optimality Equation (Equation (2)) into an assignment. This is called Value

Iteration, is also a contraction in the max-norm, and converges to the optimal value

function as the fixed-point.

2.4 Temporal Difference Learning

In this section, we describe how to evaluate policies with approximate Temporal

Difference (TD) learning. From a state space of size N = |S|, the agent sees an

observation vector φ(s) ∈ Rn corresponding to each state s. We make use of a

linear function approximator 1 parametrized by θ, such that the value estimate is

constructed as:

Vθ(s) = φ(s)>θ

The return from a state s is recursively related to that from the successor state s′ as

vπ(s) = R+ γvπ(s′). While there are many TD algorithms Sutton et al. (2009), we

consider here the simplest, TD(0). Under an imperfect approximation, we will have a
1The linear approximator also accounts for the case of tabular value function learning! In fact, if
n = N and if the feature vectors are as one-hot encodings of the states, then θ is exactly a table
of values, and φ(s)>θ corresponds to a table lookup for the state s.

8

2.4 Temporal Difference Learning

nonzero residual difference between estimates of the two sides:

δ
.
= R+ γVθ(s′)− Vθ(s)

We can then use δ to slowly correct our estimator, with a small step size η:

θ ← θ − ηδ

This looks very similar to gradient descent learning. In fact, δ is known as the

semi-gradient (Sutton and Barto, 2018) of the following loss function:

L =
1

2

{
Rt + γVθ(s′)− Vθ(s)

}2

2.4.1 On-policy and Off-policy learning

When the dataset of experiences associating s and s′ is gathered while following π,

then estimating vπ is termed on-policy learning.

There is another way to learn, termed off-policy learning, where we seek to predict

vπ of the target policy π from samples gathered according to a different behavior

policy µ. Off-policy learning is much more powerful than on-policy learning because

it can make use of all the previous experience collected by an agent. It lets us predict

the future under a policy π despite having performed very different policies in the

past.

In the tabular case, TD(0) always converges. However, under function approxima-

tion, while on-policy TD(0) converges, the off-policy case does not. This combination

of bootstrapping, function approximation, and off-policiness is called the deadly triad.

9

2 Background

2.5 Deterministic Policy Gradient

When there is a very large action space A, choosing an optimal action is impractical

as it would require solving an optimization problem at each timestep. In these

cases, actor-critic methods are useful because they explicitly represent the policy as a

parametrized actor function πθπ(s) mapping states to actions, and the action-value

function as a critic QθQ(s, a) to evaluate the actor.

In this thesis, we consider Deterministic Policy Gradients (Silver et al., 2014), an

off-policy actor-critic algorithm which updates the actor parameters θπ via gradient

ascent over the average Qπ prediction of the critic:

∇θπJ(θπ) = Eµ
[
∇aQθQ (s, a) |a=πθπ (s)∇θππθπ(s)

]
The Eµ indicates that the average is taken over (s, a) pairs sampled from data gathered

under a historical behavior policy µ. This complex expression simply means that

the actor is optimized to increase the predicted return, by backpropagating from the

average QθQ(s, πθπ(s)) output through the critic into the actor.

The critic is trained to evaluate the newest actor, by minimizing the following loss

with TD(0):

L(θQ) = Eµ
[{
QθQ(s, a)− y

}2
]

y = r + γQθQ

(
s′, πθπ(s′)

)
These two steps of policy evaluation and improvement are interleaved one after the

other, with just one gradient update performed per step.

When the actor and critic are parametrized with deep neural networks, the method

is called Deep Deterministic Policy Gradients (DDPG) by Lillicrap et al. (2015).

10

2.5 Deterministic Policy Gradient

2.5.1 Target Networks

As DDPG uses off-policy TD, it is prone to divergence with parameters spiraling off to

infinity. To avoid the deadly triad, off-policy Deep RL uses a pair of additional Target

Networks; copies of the actor and critic networks with a different set of parameters

θ̄π and θ̄Q which are delayed versions of the “live” network parameters θπ and θQ.

These are used to generate the regression targets y as:

y = r + γQθ̄Q

(
s′, πθ̄π(s′)

)
Target Networks can be one of two types:

• Hard, which are periodically updated older snapshots of θπ and θQ as used

with DQN (Mnih et al., 2015).

• Soft, which are slow moving averages (as proposed in DDPG):

θ̄Q ← (1− τ)θ̄Q + τθQ

θ̄π ← (1− τ)θ̄π + τθπ

Soft target networks use basic exponential smoothing (a kind of low-pass filter) applied

to the network parameters, with τ � 1 being a small smoothing factor.

The DDPG authors train agents on various MuJoCo robotics tasks (Todorov et al.,

2012), and find that using target networks is crucial for training without divergence.

All Deep RL methods with off-policy TD, like NAF (Gu et al., 2016), TD3 (Fujimoto

et al., 2018), and Soft Actor-Critic (SAC) (Haarnoja et al., 2018) use target networks;,

on-policy methods such as A3C (Mnih et al., 2016) do not. It is unfortunate that we

cannot use TD(0)-style updates directly, as target networks artificially slow down

credit assignment backwards in time, reducing the speed of learning.

11

2 Background

2.5.2 TD3

Algorithms like DDPG that attempt to maximize the estimated Q values induce a

well-known overestimation bias in the predictions (Hasselt, 2010). This bias can be

quite detrimental to learning as it provides misleading gradients to the actor, causing

frequent training collapses and suboptimal performance. There exist ways to remedy

this by using two Q functions and having them produce the targets for each other,

e.g. Double Q Learning (Van Hasselt et al., 2016).

However, using Double Q estimation in DDPG still does not reduce this bias

sufficiently. The TD3 algorithm (Fujimoto et al., 2018) manages to resolve this issue

by maintaining two differently initialized critics Q1
θ1

and Q2
θ2
, and using the minimum

of their estimates as the regression target:

y = r + γ min
i∈{1,2}

Qiθ̄i

(
s′, πθ̄π(s′)

)
Apart from a few orthogonal improvements, this Clipped Double Q estimation is the

only major difference between TD3 and DDPG.

12

3 Stability Analysis of TD Learning

In this chapter, we look at the dynamics of TD learning with linear function approxi-

mation, study the factors that determines convergence, and finally probe the effects

of feature normalization on the stability properties.

We first study the stability of TD(0); the focus of all such discussions in the thesis

is on policy evaluation for a policy π, unless otherwise stated. Much of the following

analysis is derived from the exposition done in the Emphatic TD paper (Sutton et al.,

2016) and the thesis of Mahmood (2017). We assume that the state space is of size

|S| = N , and the value function be represented as Vθ(s) = φ(s)>θ, where φ(s) ∈ Rn

is a feature vector corresponding to the state s ∈ S. As on-policy learning is a special

case of off-policy learning with the behavior policy µ = π, we directly study the

general case of off-policy TD(0).

3.1 Mean ODE-based formulation

Consider a state transition (St, At, Rt, St+1) with St, St+1 ∈ S and Rt ∈ R. In the

on-policy case, the data for the timestep t is also generated from our target policy π,

according to At ∼ π(a|s = St), and St ∼ dπ(s), where dπ(s) is the stationary state

distribution that the MDP eventually converges to when following π. Then, at the

time t, we have the following TD(0) update:

θt+1
.
= θt + η(Rt + γφ(St+1)>θt − φ(St)

>θt)φ(St) (4)

13

3 Stability Analysis of TD Learning

Here, η > 0 is the step-size. Equation (4) applies to on-policy learning, but in the

off-policy case, the data is gathered by a different behavior policy µ, i.e. St ∼ dµ(s).

Essentially, we are trying to estimate a quantity under one distribution by sampling

from another distribution; this means we must incorporate a importance sampling

ratio:

ρt
.
=
π(At|St)
µ(At|St)

and multiply the on-policy TD(0) update by ρt to obtain the off-policy version:

θt+1
.
= θt + ηρt(Rt + γφ(St+1)>θt − φ(St)

>θt)φ(St) (5)

The ratio ρt is only defined if µ(At|St) > 0 whenever π(At|St) > 0; this is called

coverage — that µ’s support contains that of π— and we assume it holds 1. Intuitively,

it does not make sense to predict the future under π if there is no overlap with what

has been attempted by µ.

For brevity, let us use φt to mean φ(St). Then, Equation (5) can be rewritten as:

θt+1 = θt + η

ρtRtφt︸ ︷︷ ︸
bt

− ρtφt (φt − γφt+1)>︸ ︷︷ ︸
At

θt


= θt + η (bt −Atθt) (6)

Equation (6) can be reshaped as the following discrete-time dynamical system:

θt+1 = (I − ηAt)θt + ηbt (7)

Here, At ∈ Rn×n and bt ∈ Rn are data-dependent random variables that vary per

timestep. For a practical stability study, we are interested in whether the deterministic

expected update converges. To study the expected update, it is sufficient to preserve the

same structure as in Equation (7), while replacing At and bt with their expectations.

1Practical behavior policies like ε-greedy and centered gaussians already have full coverage of the
action space, so this is not a very strong requirement.

14

3.1 Mean ODE-based formulation

We are also interested in the time-independent “steady-state” values of these matrices

— the expectation should be taken over the stationary state distribution — induced

by the µ-influenced markov chain that generated the data. Therefore, we use:

A = lim
t→∞

Eµ [At] and b = lim
t→∞

Eµ [bt]

which finally turns Equation (7) into a discrete-time first-order Ordinary Difference

Equation (ODE) 2, where the only time-varying quantity is the vector of parameters

θ:

θt+1 = (I− ηA)θt + ηb (8)

The fixed-point of this iteration can be found by equating θt+1 to θt, and it is easy to

see that the solution of the policy evaluation is θ∗ = A−1b. The question, however,

is if this is a stable attractive fixed-point, so that optimization can reach it.

The convergence of the recurrence (8) is determined entirely by the eigenvalues of

the iteration matrix (I− ηA); to see this observe that the iterates must eventually

stop changing, so:

lim
k→∞

(I− ηA)k = 0

which can only happen when the spectral radius is less than one. It is demonstrated

in Corollary 3 of the thesis by Mahmood (2017) that this holds whenever η is

sufficiently small and Re(eigi(A)) > 0, 1 ≤ i ≤ n, i.e. the eigenvalues of A must

all have positive real parts3. As this matrix is the key to convergence, Sutton et al.

(2016) and Mahmood (2017) term A the key matrix.

2Such approaches to stability analysis of stochastic approximation algorithms are referred to as
“mean ODE” proofs; (Kushner and Yin, 2003; Mahmood, 2017).

3Observe that for an i-th eigenvalue λi of A, the corresponding i-th eigenvalue of the iteration
matrix is 1− ηλi.

15

3 Stability Analysis of TD Learning

3.2 Structure of the Key Matrix

We now focus on the structure of the key matrix A, to see what could affect its

spectrum. Recall the definition of At from Equation (6):

At = ρtφt (φt − γφt+1)>

Using that, we can express A as

A = lim
t→∞

Eµ [At]

= lim
t→∞

Eµ
[
ρtφt (φt − γφt+1)>

]
=

∑
s

∑
a

dµ(s)µ(a|s)ρk
[
φk (φk − γφk+1)>

∣∣∣Sk = s,Ak = a
]

=
∑
s

∑
a

dµ(s)µ(a|s)π(a|s)
µ(a|s)

[
φk (φk − γφk+1)>

∣∣∣Sk = s,Ak = a
]

=
∑
s

∑
a

dµ(s)π(a|s)
[
φk (φk − γφk+1)>

∣∣∣Sk = s,Ak = a
]

=
∑
s

dµ(s)

φk
(
φk − γ

∑
a

π(a|s)φk+1

)> ∣∣∣Sk = s,Ak = a

 (9)

Note that φk depends only on µ and not π, hence it is unaffected by the π(a|s) factor

which gets marginalized to 1 in the left term. At this point, we can begin transforming

Equation (9) into a much more concise matrix form. To do this, we introduce three

new matrices; let Pπ ∈ RN×N be the stochastic matrix of π-influenced state transition

probabilities, and let Dµ ∈ RN×N be a diagonal matrix with the stationary state

occupancy probabilities dµ(s) along the diagonal. Lastly, let Φ ∈ RN×n be a stack of

all state feature vectors over the state space:

Φ =


φ(s1)>

φ(s2)>

...

φ(sN)>



16

3.3 Eigenvalues of the Key Matrix

Again, following Sutton et al. (2016), with some notational liberties we continue from

Equation (9):

A =
∑
s

dµ(s)φ(s)

(
φ(s)− γ

∑
s′

[Pπ]ss′φ(s′)

)>

=
∑
s

φ(s)[Dµ]ss

(
φ(s)− γ

∑
s′

[Pπ]ss′φ(s′)

)>

=
∑
s

[Φ]>s [Dµ]ss

(
φ(s)− γ

∑
s′

[Pπ]ss′φ(s′)

)>

=
∑
s

[Φ]>s [Dµ]ss

(
[Φ]>s − γ

∑
s′

[Pπ]ss′ [Φ]>s′

)>

which finally simplifies to

A = Φ>Dµ(I− γPπ)Φ (10)

The features Φ project the the N ×N matrix K = Dµ(I− γPπ) into a (typically)

lower dimensional n× n A matrix. K is referred to by Mahmood (2017) the big key

matrix.

3.3 Eigenvalues of the Key Matrix

A much stronger condition than having eigenvalues with positive real parts is positive

definiteness4. Sutton et al. (2016) use a weaker definition of positive definiteness by

dropping the matrix symmetry requirement and simply requiring that a matrix M is

p.d. iff x>Mx > 0, ∀x ∈ Rn. 5

We first see what happens in the on-policy case. Then, the big key matrix becomes

K = Dπ(I− γPπ).

To prove positive-definiteness of an asymmetric matrix K, it should be sufficient

to show that its symmetric form S = K + K> is p.d., which follows if we can prove
4The latter implies the former, but the converse does not hold.
5Positive semi-definiteness also avoids divergence, and is often encountered in practice.

17

3 Stability Analysis of TD Learning

that S is diagonally dominant. Sutton et al. (2016) do exactly this, by showing that

• Diagonal entries of K are positive

• Off-diagonal entries of K are negative

• Each row-sum plus corresponding column-sum is greater than zero

The vector of row-sums of K can be computed by multiplying from the right by a

vector of ones 1 ∈ RN , and keeping in mind that 1 is a right-eigenvector of Pπ:

K1 = Dπ(I− γPπ)1

= Dπ(1− γPπ1)

= Dπ(1− γ1)

= (1− γ)dπ

where dπ is the vector representing the diagonal of Dπ, as Dπ1 = dπ; all the row-sums

are therefore positive. For the column-sums, we multiply from the left:

1>K = 1>Dπ(I− γPπ)

= d>π (I− γPπ)

= (d>π − γd>πPπ)

= (d>π − γd>π) (11)

= (1− γ)d>π

where step (11) holds because the vector of stationary probabilities is always a left-

eigenvector of the markov transition matrix; again, all column-sums are positive.

Thus the on-policy K is positive definite. It follows that for any vector x 6= 0 ∈ RN ,

we have x>Kx > 0. Let us map any nonzero vector y ∈ Rn into RN as Φy = x.

x>Kx > 0 =⇒ y>Φ>KΦy > 0 =⇒ y>Ay > 0

18

3.3 Eigenvalues of the Key Matrix

which proves that A is p.d., and therefore on-policy approximate TD(0) is convergent.

In off-policy TD(0), K = Dµ(1− γPπ) is not guaranteed to be positive definite,

because d>µ is not necessarily a left-eigenvector of Pπ, and we cannot use a trick like

step 11; column-sums may be of any sign.

However, there is one useful property that holds regardless of on- or off-policy

status: the eigenvalues of K always have positive real parts. This is easy to see by a

straightforward application of Gershgorin’s Circle Theorem Gershgorin (1931): The

diagonal entries are still positive, the off-diagonal row entries are all negative, and

the row-sums are positive, meaning that all the gershgorin disks — within which the

eigenvalues must be present — lie safely on the right side of imaginary axis.

This helps when we have tabular features, in which case N = n and Φ = I so

that A = K, and then A inherits the well-behaved eigenvalues; thus tabular TD(0)

always converges. Despite this property of K, in the approximate case the projected

matrix A = Φ>KΦ can — and often does — have eigenvalues with negative real

parts, and TD is then divergent. In the next chapter, we study how this problem

could be remedied.

19

4 Method

We have seen how the convergence of TD(0) is affected by the matrices involved in its

ODE. In this chapter, we describe our contributions towards improving its stability,

both in the linear setting and with deep networks.

4.1 Stabilizing off-policy TD

Much research has gone into developing several off-policy TD algorithms that can

be motivated as gradient descent, which include Gradient Temporal Differences

(GTD/GTD-2) and TD with gradient Correction (TDC) Sutton et al. (2009); Bhat-

nagar et al. (2009). The update rules for these algorithms make use of an extra set of

parameters and are not as simple as TD(0) or TD(λ). The newest and most promising

alternative is Emphatic TD Sutton et al. (2016), which is considerably simpler and is

also a semi-gradient algorithm like TD(0), albeit with a state-dependent emphasis

weighting. All of these algorithms are proven to be convergent.

To the best of our knowledge, none of those algorithms have been successfully

demonstrated in Deep RL so far — which happens to use TD with target networks.

In this thesis, our focus is on how TD(0) could be made more stable.

As seen, the instability arises due to the key matrix A being indefinite (i.e. having

eigenvalues with both positive and negative real parts), which means the solution lies

at a saddle point and a first-order descent method diverges. To make TD(0) converge,

we must find a way to ensure that all eigenvalues have positive real parts1 We will

henceforth refer to matrices with such a spectrum as stable matrices.
1This is a weaker requirement than needing A to be positive definite.

20

4.2 Data Recentering

Recall that the big key matrix K is already a stable matrix. A is its (generally

lower dimesional) projection using the features Φ:

A = Φ>KΦ

The projected version is often unstable. Now, observe that the features completely

determine the nature of the projection. We already know of one kind of feature

encoding (Φ = I) that makes A stable. Could there exist a safe family of features to

ensure that the eigenvalues will be well-behaved? Feature selection in TD learning is

an open problem, and this possibility motivates our analysis in the rest of this thesis.

To quote Sutton and Barto (2018) on off-policy semi-gradient methods:

“ Remember that these methods are guaranteed stable and asymptotically unbiased

for the tabular case, which corresponds to a special case of function approximation.

So it may still be possible to combine them with feature selection methods in such

a way that the combined system could be assured stable.”

4.2 Data Recentering

When doing linear regression via gradient descent, it is common to normalize or

standardize your dataset. In particular, data standardization has numerous benefits.

For a dataset with samples x ∈ Rn, standardization transforms x into x̂ whose k-th

feature is:

x̂k
.
=
xk − E[xk]√
V ar(xk)

with the division performed elementwise. Incidentally, this is also what Batch Nor-

malization (Ioffe and Szegedy, 2015) does. We now consider the effects of recentering

by the mean features.

In off-policy TD, we are dealing with not one but two data distributions, where the

“current” features φ are produced by running the behavior policy µ and the “next”

features φ′ are produced according to π. It is much more easy to see what the two

21

4 Method

datasets are in the case of Qπ estimation. For example in DPG learning Lillicrap et al.

(2015), the input to the function approximator QπθQ is a concatenation of the state

and action vectors. During a TD update, we sample an experience (s, a, r, s′) and

provide two different inputs to the estimator in a single step: (s, a) and (s′, πθπ(s′)),

where a was produced by µ. These are distributed differently on account of the

differing actions.

Let us consider what happens when we subtract a vector m ∈ Rn from the data,

so that φ 7→ φ −m. Recall that in TD(0) our feature vectors are contained in

Φ ∈ RN×n. Subtracting m from the encoding results in a new feature matrix Φ̂:

Φ̂ = Φ− 1m> (12)

where 1 ∈ RN×1 is a column vector of ones. Now, let us give a meaning to m. We

want m to be the mean feature vector, but since it is unclear as to which distribution

should be used for computing the feature mean, let us define an α-parametrized

mixture of both, with α determining the contribution of µ 2:

m = Eµ
[
αφ + (1− α)Eπφ′

]
(13)

=⇒ m> = 1>Dµ(αI + (1− α)Pπ)Φ (14)

which amounts to sampling a batch of experience tuples and averaging the weighted

sum. Note that the Eπ is additionally conditioned upon a fixed previous state’s

φ ∼ µ.
In practice, we will only be able to estimate m by averaging a minibatch, which

means it will not be exact, so we are also interested in points that are not exactly on

the line connecting the two means 1>DµΦ and 1>DµPπΦ. Therefore, let us increase

generality and consider a full linear combination of the two:

m> = 1>Dµ(αI + βPπ)Φ (15)
2Note that we have intentionally omitted arguments s or (s, a) here because we want to emphasise
that this holds both for V π and Qπ estimation.

22

4.3 Baird’s Counterexample

Combining Equation (12) and Equation (15), we get our new feature matrix Φ̂:

Φ̂ = Φ− 1m>

= Φ− 11>Dµ(αI + βPπ)Φ

=
(
I− 11>Dµ(αI + βPπ)

)
Φ (16)

This has a simple structure; it is an N × N linear operator multiplied to Φ from

the left. That means our new key matrix can be expressed in terms of the original

features with a new big key matrix:

Aα,β
.
= Φ̂>KΦ̂

.
= Φ>Kα,βΦ (17)

Thus, we can say that recentering features around an expectation over our data

amounts to simply changing the big key matrix K into Kα,β. Because of the term

involving 11>, the new key matrices are low-rank perturbations of the originals; this

has an effect of shifting the eigenvalues. A rigorous analysis of the eigenspectrum of

Aα,β and Kα,β is out of scope for this thesis, and we leave it for future work. Instead,

we now take a more empirical approach, and study the behavior of different α, β

combinations on various problems.

4.3 Baird’s Counterexample

The MDP we consider is the seven-star Baird’s Counterexample (Baird, 1995). It

demonstrates a case where off-policy TD diverges, both when doing stochastic updates

with single samples, or when performing deterministic expected updates. As shown

in Figure 2, there are only two actions: dashed and solid, which determine the state

the agent ends up in. With µ, the probability of being in any one of the seven states

is a uniform 1
7 , whereas under π, the agent ends up and remains in the bottom state

s7, having zero visitation probability elsewhere.

23

4 Method

Figure 2: In Baird’s Counterexample, the reward is always zero, and so is the true
value function. The solid arrows describe transitions due to the target policy π,
whereas the dashed arrows describe the behavior policy µ. The learnable parameters
are the weights wi, and the coefficients of the weights in the various nodes describe
the feature vectors in those states. The figure is reproduced from Sutton and Barto
(2018).

4.3.1 Convergence with normalization

Despite this being a very simple MDP — with zero rewards everywhere — the

weights3 and value estimations diverge exponentially to infinity, solely on account of

off-policy sampling; see Figure 3. Applying feature normalization with α = β = 1
2 to

Baird’s Counterexample (Figure 4) results in correct convergence

We can also look at other combinations of (α, β). In Figure 5 the pair (0, 1)

converges, albeit with some high-frequency oscillations. Figure 6 plots the learning

dynamics for a combination (0.1, 0.1) which is not along the β = 1− α line, showing

an interesting pattern: it converges very slowly, exhibiting low frequency oscillations

along the way.

4.3.2 Phase Plots

Having seen that subtracting α, β combinations from the features can make learning

stable, we can test which combinations are desirable. To do so, we generate phase

3The weights vector is initialized as w = (1, 1, 1, 1, 1, 1, 10, 1)>

24

4.3 Baird’s Counterexample

0 200 400 600 800 1000

Steps

0

50

100

150

200

250

300

W
ei

gh
t

va
lu

e

Semi-gradient off-policy TD α = 0, β = 0

w1

w2

w3

w4

w5

w6

w7

w8

0 200 400 600 800 1000

Steps

0

100

200

300

400

500

600

700

P
re

d
ic

te
d

va
lu

e

Semi-gradient off-policy TD α=0 β=0

s1

s2

s3

s4

s5

s6

s7

Figure 3: On the left, we show the evolution of weights w using TD(0) on Baird’s
Counterexample, corresponding to our α = 0, β = 0. On the right, we can see
evolution of predicted state values. Despite the zero reward, both are diverging to
infinity. The plots are made with the accompanying code of Sutton and Barto (2018).

0 500 1000 1500 2000

Steps

−2

0

2

4

6

8

10

W
ei

gh
t

va
lu

e

Semi-gradient off-policy TD α = 0.5, β = 0.5

w1

w2

w3

w4

w5

w6

w7

w8

0 500 1000 1500 2000

Steps

−4

−2

0

2

4

P
re

d
ic

te
d

va
lu

e

Semi-gradient off-policy TD α=0.5 β=0.5

s1

s2

s3

s4

s5

s6

s7

Figure 4: In the left plot, α = 0.5, β = 0.5 makes the weights w converge. On the
right, the predicted state value function correctly converges to zero everywhere.

25

4 Method

0 500 1000 1500 2000

Steps

−2

0

2

4

6

8

10

W
ei

gh
t

va
lu

e

Semi-gradient off-policy TD α = 1, β = 0

w1

w2

w3

w4

w5

w6

w7

w8

0 500 1000 1500 2000

Steps

−4

−2

0

2

4

6

8

P
re

d
ic

te
d

va
lu

e

Semi-gradient off-policy TD α=1 β=0

s1

s2

s3

s4

s5

s6

s7

Figure 5: Convergence of Baird’s Counterexample with α = 1, β = 0.

0 5000 10000 15000 20000 25000 30000

Steps

−20

−10

0

10

20

30

40

50

W
ei

gh
t

va
lu

e

Semi-gradient off-policy TD α = 0.1, β = 0.1

w1

w2

w3

w4

w5

w6

w7

w8

0 5000 10000 15000 20000 25000 30000

Steps

−20

0

20

40

60

80

P
re

d
ic

te
d

va
lu

e

Semi-gradient off-policy TD α=0.1 β=0.1

s1

s2

s3

s4

s5

s6

s7

Figure 6: Very slow convergence of Baird’s Counterexample with α = 0.1, β = 0.1.

26

4.3 Baird’s Counterexample

plots of the value function convergence over the state space, for a grid of α, β values.

-2 -1 0 1 2
α

2

1

0

-1

-2

β

−4

−2

0

2

4

Figure 7: A plot of the value function convergence, marked as log(|V̄ |), after running
expected TD learning on Baird’s Counterexample for different locations on the α, β
plane. Each pixel is one run of training for 105 iterations, with discount γ = 0.99
and step size η = 10−3. The symbol × marks α = β = 0. Lower is better.

Some combinations diverge, and some converge to the correct value of zero; we can

accommodate the vastly different scales by taking the logarithm of the absolute values

of the final predictions. For Baird’s Counterexample, Figure 7 depicts the phase plot.

By inspecting this plot and the final V values, we make two key observations:

• There exists a “phase” boundary marking a transition from yellow region of

divergence to the green region of stability.

• The line α+ β = 1 in the stable zone, converges an order of magnitude faster.

Interestingly, the special line meets the edge of the stability boundary; this point

happens to be α = 1, β = 0.

We can drop the costly optimization and instead sort the eigenvalues of Aα,β by

their real parts, to directly plot the smallest of them. Figure 8 does this for a much

27

4 Method

-150 -75 0 75 150
α

150

75

0

-75

-150

β

-0

-10

-20

-30

-40

(a)

-150 -75 0 75 150
α

150

75

0

-75

-150

β

-0

-10

-20

-30

-150 -75 0 75 150
α

150

75

0

-75

-150

β

-0

-10

-20

-30

-40

(b)

Figure 8: Minimum eigenvalue of Aα,β on different locations on the α, β plane.
The values have been negated to match the previous color scheme, so that negative
eigenvalues are yellowish. (a) With γ = 0.99. (b) With γ = 0.9 and γ = 1 on the left
and right respectively.

bigger range of α and β. This reveals an interesting pattern: the unstable zone is

shaped like an oval. Changing the discount factor to be smaller (γ = 0.9) makes the

unstable oval shrink, which is intuitively correct because it brings the problem closer

to direct linear regression. Upping it to γ = 1 makes the oval grow to become an

28

4.4 Positive Semi-Definiteness of the Key Matrices

entire half-plane, meaning that the dynamics of undiscounted TD(0) are still stable

for some feature encodings! Unfortunately this does not tell us much about the line

of fast convergence.

4.4 Positive Semi-Definiteness of the Key Matrices

To see where the blue line originates from, recall that the proof for on-policy TD

showed that the key matrices K and A were positive (semi) definite. Figure 9 shows

four different MDPs with 15 states, 8 features, and γ = 1. Dµ, Pπ, and the features

are randomly generated. The figure are plots of where Aα,β and the corresponding

Kα,β are p.s.d. As expected, in these examples Kα,β always satisfies this desirable

property on the special line α+ β = 1 for β > 0. We can see that whenever Kα,β is

p.s.d., Aα,β has to be so too; for the projected key matrix this appears to hold true

in the vicinity of the line as well. This could explain why our feature normalization

scheme turns off-policy TD(0) convergent just like the on-policy version.

4.4.1 Rank-reduction property of α + β = 1 normalization

Having observed this phenomenon in the plots, it would be interesting to see what

properties the normalization imparts to the big key matrix.

Using Equation (16) and Equation (17), we can expand the full (and rather messy)

expression of the modified key matrix as:

Kα,β = Dµ(I− γPπ)

− (1− γ)Dµ11>Dµ(αI + βPπ)

− (αI + βP>π)Dµ11>Dµ(I− γPπ)

+ (1− γ)(αI + βP>π)Dµ11>Dµ(αI + βPπ)

(18)

Analogously to the on-policy study, we check the row and column sums of this

matrix, which after a few steps of derivation simply to the following:

29

4 Method

Kα,β1 = (1− γ) (1− (α+ β))
(
I−

(
αI + βP>µ

))
Dµ1 (19)

1>Kα,β = 1>Dµ (1− (α+ β)) (I− γPπ − (1− γ) (αI + βPπ)) (20)

Substituting α+ β = 1 into the above formulas makes the expressions zero; therefore

the modified big key matrix has the surprising property that its rows and columns

both sum to 0. This means that 1 is a left and right eigenvector with eigenvalue zero,

and Kα,β is no longer full-rank.

It would appear that α, β normalization has a tendency to knock out the very

eigenvalues which cause indefiniteness and unstable A matrices. While this indeed

seems encouraging, it is certainly not the complete picture; we have been unable to

establish diagonal dominance, and in fact there exist some counterexample MDPs

to our normalization scheme. We have found that with randomly generated Dµ and

permutation matrices P (e.g. shuffled identity matrices) and smooth relaxations

thereof, positive definiteness is sometimes violated even on the special line, and TD(0)

still remains unstable there. Curiously, for those same contrived MDPs, ensuring that

the number of states N and the number of features n have a large discrepancy (i.e.

N � n) seems to turn those problems convergent!

This has identified interesting phenomena, even without considering the effect of

feature scaling. Future work will perhaps find an additional ingredient (or a subset

of MDPs) that could make off-policy TD(0) provably converge.

30

4.4 Positive Semi-Definiteness of the Key Matrices

-2 -1 0 1 2
α

2

1

0

-1

-2

β

A

-2 -1 0 1 2
α

2

1

0

-1

-2

β

K

-2 -1 0 1 2
α

2

1

0

-1

-2

β

A

-2 -1 0 1 2
α

2

1

0

-1

-2

β

K

-2 -1 0 1 2
α

2

1

0

-1

-2

β

A

-2 -1 0 1 2
α

2

1

0

-1

-2

β

K

-2 -1 0 1 2
α

2

1

0

-1

-2

β

A

-2 -1 0 1 2
α

2

1

0

-1

-2

β

K

Figure 9: Positive Semi-Definiteness plots for Aα,β and Kα,β, on four randomly
generated MDPs. The special blue line corresponds to both matrices being p.s.d,
unlike anywhere else in the plane.

31

5 CrossNorm for Deep Reinforcement

Learning

In the Chapter 4 we saw that the α + β = 1 normalization scheme often tends to

make off-policy semi-gradient TD(0) convergent. We now turn our attention to Deep

Reinforcement Learning and larger-scale problems. In this chapter we will extend the

normalization scheme to deep neural networks and compare the performance with

existing approaches.

The focus of our experimentation will be on DDPG (Lillicrap et al., 2015) and its

state-of-the-art derivative TD3 (Fujimoto et al., 2018), both of which are actor-critic

methods involving a policy evaluation step.

5.1 From BatchNorm to CrossNorm

In DDPG, the the action-value function QπθQ(s, a) is represented as a deep neural

network that consumes a concatenation of the state and action vectors as input, and

emits a single scalar value as its prediction. The hidden layers within it have highly

nonlinear activations.

It is very difficult to do an analysis of how such neural networks can be better

conditioned; nevertheless it is common practice to treat them as cascades of data

features by independently applying standardization to each layer with Batch Normal-

ization Ioffe and Szegedy (2015). Our normalization scheme can also be performed

by carefully applying BatchNorm to every layer, including the inputs. Note that

recentering can artificially reduce the model expressivity, so BatchNorm also includes

32

5.2 Experiments

learnable scale and shift vectors that are applied right after the standardization.

A common mistake in using BatchNorm with DDPG is that batches of (s, a) and

(s′, πθπ(s′)) — which are sampled from two different distributions — are processed in

succession while keeping BatchNorm in train mode; this is wrong because then very

different batch statistics will be used to re-center the activations in each forward pass.

The “correct” way to use BatchNorm would be to set the critic to test mode when

performing the forward pass for (s′, πθπ(s′)), ensuring that both passes will re-center

by the same moments of (s, a); this corresponds to α = 1, β = 0.

We have seen from the phase plots that the BatchNorm setting of α = 1, β = 0

often lies at the very edge of the stability boundary, and it is possible that due to

sampling noise or policy updates the mean subtraction might cross over into the

unstable region. For this reason, we propose a safer trick; the two batches could be

concatenated as s̃ = [s, s′] and ã = [a, πθπ], then processed as a single forward pass of

the batch (s̃, ã) through the critic. As we are normalizating equally across the two

distributions, we choose to call this α = β = 1
2 combination Cross Normalization.

CrossNorm is also simpler to use, as it does not require switching between the two

modes during TD learning.

5.2 Experiments

CrossNorm is a modular improvement that can be immediately incorporated into

existing Deep RL algorithms that learn Q value estimators. We apply it to DDPG

and TD3 with the aim of making them more stable. For evaluation we compare

our improvement against their baselines on four MuJoCo (Todorov et al., 2012)

continuous control tasks provided by OpenAI Gym (Brockman et al., 2016) as shown

in Figure 12. We use the code provided by Fujimoto et al. (2018) which contains the

authors’ TD3 implementation and a highly performant version of DDPG.

33

5 CrossNorm for Deep Reinforcement Learning

5.2.1 Fixed-Buffer Experiments

To motivate using CrossNorm here, we first test if the stabilizing properties of

normalization can hold in more complex MDPs with continuous state and action

spaces. We take transitions from a large Walker2d experience buffer — gathered by a

different agent — and estimate approximate Aα,β matrices by sampling a large batch

of size 20,000. The feature vectors are extracted from the last layer of a randomly

initialized 3-layer neural network with LeakyReLU Maas (2013) activations. The

-2 -1 0 1 2
α

2

1

0

-1

-2

β

−4

−2

0

2

4

Figure 10: α, β phase plot from experience gathered by a Walker2d-v2 agent. The
phenomenon with the ellipse and the fast-converging line persists in more complex
MDPs. The “convergence" is established by setting the rewards to zero and then
performing expected TD(0) updates on the last layer; the previous layers are frozen.

resulting phase plot Figure 10 exhibits the very properties that we seek, albeit for

the case of training just the last layer.

Next, we take the aforementioned experience memory of 106 transitions and perform

policy improvement by training a full DDPG agent from scratch to solve Walker2d.

The baseline DDPG agent without target networks quickly diverges to infinity. But

the incorporation of CrossNorm indeed stabilizes off-policy TD even with complex

34

5.2 Experiments

0 20000 40000 60000 80000 100000
Time steps (105)

102

104

106

108

lo
g
|Q
|

DDPG w/o Target Networks

DDPG w/o Target Networks with CrossNorm

Figure 11: DDPG agents training on a fixed experience memory with 106 samples.
Due to vastly different scales, the plots are the log of the averaged Q value predictions
for a batch size of 1024. DDPG diverges without target networks; CrossNorm makes
it converge.

MDPs, neural networks, and policy improvement — which entails an ever-changing

Pπ — and its Q value estimates soon converge to a stable value.

5.2.2 Concurrent Training

(a) HalfCheetah (b) Hopper (c) Walker2d (d) Ant

Figure 12: MuJoCo simulation environments.

Lastly, we do standard concurrent training wherein the agent gathers samples from

the environment whilst learning. We compare the baseline DDPG algorithm against

the CrossNorm variant, with and without target networks (Figure 13). No changes

are made other than a new set of hyperparameters; while the baseline uses the Adam

35

5 CrossNorm for Deep Reinforcement Learning

optimizer (Kingma and Ba, 2014) and a learning rate of 10−3, we use RMSprop

(Tieleman and Hinton, 2012) with a learning rate of 10−4. The default batch size of

100 is used.

DDPG w/o TN DDPG DDPG + CrossNorm DDPG + CrossNorm w/o TN

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
tu

rn

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
tu

rn
(a) HalfCheetah-v2 (b) Hopper-v2

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

3000

2000

1000

0

1000

2000
Av

er
ag

e
Re

tu
rn

(c) Walker2d-v2 (d) Ant-v2

Figure 13: Comparisons for DDPG with CrossNorm. The curves are averages and
halved standard deviations over 10 runs with unique random seeds.

In the TD3 evaluations (Figure 14), we increase the batch size to 256 for all the

algorithms and use LeakyReLU activations (Maas, 2013) for the CrossNorm variants,

and again use RMSprop instead of Adam. The same default learning rate of 10−3 is

used in all runs.

In both sets of experiments, we find that the CrossNorm versions perform far better

than the DDPG baseline. With CrossNorm, we are able to train DDPG and TD3

agents without relying on target networks. There is a particularly visible lead early

on in the TD3 comparisons due to the faster credit assignment enabling faster policy

36

5.2 Experiments

improvement; the sample efficiency is very high.

With TD3 and CrossNorm, we notice a certain drop in performance later on in the

training. From inspections of Q value predictions we do not observe any divergence;

the policy suddenly degrades and the Q predictions correctly track the performance of

the policy. As this issue is not seen with DDPG and CrossNorm, we suspect that this

is a consequence of the special dual critic configuration that favors underestimation

bias.

TD3 TD3 + CrossNorm TD3 + CrossNorm w/o Target Networks

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
tu

rn

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

(a) HalfCheetah-v2 (b) Hopper-v2

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

(c) Walker2d-v2 (d) Ant-v2

Figure 14: Comparisons for TD3 with CrossNorm. The curves are averages and
halved standard deviations over 10 runs with unique random seeds.

37

6 Conclusion

6.1 Summary

Reinforcement Learning has a famous problem called the deadly triad which states

that a combination of function approximation, bootstrapping, and off-policy learning

risks divergence for iterative learning algorithms like TD(0). While attempts to

remedy the problem by developing alternative TD algorithms exist, TD(0) remains

desirable for its simplicity and ease of use with deep neural networks.

This thesis studies the dynamics of approximate TD learning and the conditions

under which it can diverge. A major cause is the difference in data distributions

caused by off-policy learning. We propose a normalization method that takes into

account these differences, called CrossNorm. Empirically, the results show that this

prevents divergence on Baird’s Counterexample and many synthetic MDPs.

This method was applied to two continuous control Deep Reinforcement Learning

algorithms — DDPG and TD3 — and it improved the learning of complex control

policies in standard MuJoCo tasks. The incorporation of CrossNorm allowed the

training of agents without requiring target networks. To the best of our knowledge,

this is the first time that an off-policy Deep RL algorithm like DDPG has been stably

trained without target networks; and with better performance.

6.2 Future Work

In this thesis we considered normalization in the very narrow sense of mean subtraction.

This yielded promising results in the linear TD(0) case, however it stabilizes many

38

6.2 Future Work

but not all MDPs. We derived an interesting property of the modified big key matrix,

but were still unable to establish diagonal dominance.

It is possible that we are missing an extra ingredient in our analysis. Future lines

of research can include identifying classes of MDPs which cannot be stabilized with

mean subtraction, or the effect of scaling features by their standard deviations.

We have seen that CrossNorm in Deep RL gives good results; it works well over

a wide range of MDPs as policy improvement changes the Pπ matrix all the time.

This suggests that perhaps we could simply get a better behaved function class by

incorporating learnable feature shifts in addition to the mean recentering.

If any of these ideas completes the puzzle, a convergence proof for off-policy

approximate TD(0) might be within reach.

In the case of TD3 with CrossNorm, it would be worthwhile to pinpoint a cause

for the observed collapse in performance in the latter stages of training; as it occurs

both with and without target networks, it appears to not be due to divergence. A

possibility is that this might be an issue with clipped dual critics, which when paired

with saturating policies can cause an underestimation bias, possibly providing a

misleading training signal to the actor.

39

Acknowledgments

Firstly, I would like to thank Prof. Thomas Brox for giving me total freedom to

choose the topic for my research; and for listening to each idea I proposed before

settling on this one.

Max and Artemij, thank you for the very engaging discussions we’ve had together

over the past year or so, and for writing a paper on this topic with me. The whiteboard

sessions in pursuit of the ill-fated proof will not be forgotten. And neither will the

matplotlib magic.

I would also thank Thorsten for setting up the spare office laptop for me when

mine wouldn’t start anymore, days before the deadline.

Thanks to all the students in the LMB pool, for all the chit-chat and career advice.

And thanks to all my friends in Freiburg who made my stay here colorful.

I thank my parents for always being supportive, despite the long distance, and

pushing me to keep moving when I was stuck.

Lastly, and most of all, I want to thank my wife Aakriti; without whose infinite

patience, care, and prodding I would not have finished this.

40

Bibliography

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 518:529 EP –,

Feb 2015.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.

Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a

competitive approach to reinforcement learning. arXiv preprint arXiv:1803.07055,

2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement

learning for robotic manipulation with asynchronous off-policy updates. In Robotics

and Automation (ICRA), 2017 IEEE International Conference on, pages 3389–3396.

IEEE, 2017.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,

Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al.

41

Bibliography

Multi-goal reinforcement learning: Challenging robotics environments and request

for research. arXiv preprint arXiv:1802.09464, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on

Machine Learning, pages 448–456, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural

network dynamics for model-based deep reinforcement learning with model-free

fine-tuning. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 7559–7566. IEEE, 2018.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena

Scientific, 1st edition, 1996. ISBN 1886529108.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David

Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for

temporal-difference learning with linear function approximation. In Proceedings of

the 26th Annual International Conference on Machine Learning, pages 993–1000.

ACM, 2009.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In IROS, pages 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5.

URL http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep

q-learning with model-based acceleration. In International Conference on Machine

Learning, pages 2829–2838, 2016.

42

http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

Bibliography

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation

error in actor-critic methods. In ICML, volume 80 of JMLR Workshop and

Conference Proceedings, pages 1582–1591. JMLR.org, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning

Research, pages 1861–1870, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.

PMLR. URL http://proceedings.mlr.press/v80/haarnoja18b.html.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. In International conference on machine learning,

pages 1928–1937, 2016.

Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing

Systems, pages 2613–2621, 2010.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double q-learning. 2016.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach

to the problem of off-policy temporal-difference learning. The Journal of Machine

Learning Research, 17(1):2603–2631, 2016.

Ashique Mahmood. Incremental Off-policy Reinforcement Learning Algorithms. PhD

thesis, University of Alberta, 2017.

Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms

and applications, volume 35. Springer Science & Business Media, 2003.

Semyon Aranovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix.

1931.

43

http://proceedings.mlr.press/v80/haarnoja18b.html

Bibliography

Shalabh Bhatnagar, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei,

and Csaba Szepesvári. Convergent temporal-difference learning with arbitrary

smooth function approximation. In Advances in Neural Information Processing

Systems, pages 1204–1212, 2009.

Leemon Baird. Residual algorithms: Reinforcement learning with function approxi-

mation. In Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models.

2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 2012.

44

	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.1.1 Model-Based RL
	2.1.2 Model-Free RL

	2.2 Policies and Value Functions
	2.3 Dynamic Programming
	2.3.1 Policy Evaluation
	2.3.2 Policy Improvement

	2.4 Temporal Difference Learning
	2.4.1 On-policy and Off-policy learning

	2.5 Deterministic Policy Gradient
	2.5.1 Target Networks
	2.5.2 TD3

	3 Stability Analysis of TD Learning
	3.1 Mean ODE-based formulation
	3.2 Structure of the Key Matrix
	3.3 Eigenvalues of the Key Matrix

	4 Method
	4.1 Stabilizing off-policy TD
	4.2 Data Recentering
	4.3 Baird's Counterexample
	4.3.1 Convergence with normalization
	4.3.2 Phase Plots

	4.4 Positive Semi-Definiteness of the Key Matrices
	4.4.1 Rank-reduction property of +=1 normalization

	5 CrossNorm for Deep Reinforcement Learning
	5.1 From BatchNorm to CrossNorm
	5.2 Experiments
	5.2.1 Fixed-Buffer Experiments
	5.2.2 Concurrent Training

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

